

Fig. 8. α_f as a function of T for He⁴ at $P = 25.47 \text{ kg/cm}^2$ and $T < T_{\lambda}$.

perature. The curve of Fig. 3 exhibits a sharp rise in α_f with decreasing P_m until a maximum is reached at ~ 50 kg/cm². At pressures below this, α_f decreases rapidly, becomes discontinuous at the λ -point by assuming large negative values which decrease in magnitude with further decreases in P_m , as shown in Fig. 8. The α_f values of Keesom and Keesom (9), plotted in Fig. 8, were derived from their PVT measurements and show good agreement with the present data.

The V_f measurements of Table I agree with those of Dugdale and Simon (3) to within 1 percent. The newly determined melting curve, expressed by Eq. (2) and Table VI, forms a smooth extension of that reported earlier (1).

Fig. 9. Condensed phase diagram for He³.

B. Discussion of He³ Results

At high pressures the properties of He³ along the melting curve roughly parallel those of He⁴. At low pressures, although He³ does not display superfluidity, there are other unique features which merit detailed discussions.

1. The solid-solid transition

With reference to Fig. 2, the discontinuity in the ΔV_m curve for He³ at ~ 141 kg/cm² is a consequence of a triple point in the melting curve where two types of solid are in equilibrium with the fluid phase. A careful determination of the melting curve showed a slight discontinuity in slope which occurs at 141 kg/cm²